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FELIX GOTTI

Lecture 15: Generating Functions I: Generalized Binomial Theorem
and Fibonacci Sequence

In this lectures we start our journey through the realm of generating functions.
Roughly speaking, a generating function is a formal Taylor series centered at 0, that
is, a formal Maclaurin series. In general, if a function f(x) is smooth enough at x = 0,
then its Maclaurin series can be written as follows:

(0.1)
∞∑
n=0

f (n)(0)

n!
xn,

where f (n)(x) is the n-th derivative of f(x). We know from Calculus that the Maclaurin
series of the function (1− x)−1 is

(0.2)
1

1− x
=

∞∑
n=0

xn.

The Maclaurin series of every polynomial function is itself. In particular, the Bino-
mial Theorem gives us an explicit formula for the Maclaurin series/polynomial of any
nonnegative integer power of the binomial 1 + x:

(1 + x)m =
m∑

n=0

(
m

n

)
xn.

But what if we want to compute the Maclaurin series of (1 + x)r when r is not a
nonnegative integer?

Generalized Binomial Theorem. The Generalized Binomial Theorem allows us to
express (1 + x)r as a Maclaurin series using a natural generalization of the binomial
coefficients. For any r ∈ R and n ∈ N0, we set

(0.3)

(
r

n

)
:=

r(r − 1) · · · r − n+ 1

n!
.

Observe that when r ∈ N0, we recover the standard formula for the binomial coeffi-
cients. We are now in a position to generalize the Binomial Theorem.
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Theorem 1. For any r ∈ R,

(0.4) (1 + x)r =
∞∑
n=0

(
r

n

)
xn.

Proof. Set f(x) = (1 + x)r. For each n ∈ N0, we see that f (n)(x) = (r)n(1 + x)r−n,
and so f (n)(0)/n! =

(
r
n

)
. Therefore the Maclaurin formula of f(x) is that one in the

right-hand side of (0.4). □

As an application of Theorem 1, we can generalize (0.2).

Example 2. Let us find the Maclaurin series of (1 − x)−m when m ∈ N. First, note
that for each n ∈ N0,(

−m

n

)
=

1

n!

n−1∏
i=0

(−m− i) =
(−1)n

n!
m(m+ 1) · · · (m+ n− 1)

= (−1)n
(m+ n− 1)!

n!(m− 1)!
= (−1)n

(
m+ n− 1

m− 1

)
.

Now in light of Theorem 1,

(1 + x)−m =
∞∑
n=0

(
−m

n

)
xn =

∞∑
n=0

(−1)n
(
m+ n− 1

m− 1

)
xn =

∞∑
n=0

(
m+ n− 1

m− 1

)
(−x)n.

Evaluating the previous identity at −x, we obtain that

(1− x)−m =
∞∑
n=0

(
m+ n− 1

m− 1

)
xn.

Generating Function of a Sequence. We can associate to any sequence (an)n≥0 of
real numbers the formal power series

∑∞
n=0 anx

n. We call this formal power series the
(ordinary) generating function of the sequence (an)n≥0. When

∑∞
n=0 an converges to a

function F (x) in some neighborhood of 0, we also call F (x) the (ordinary) generating
function of (an)n≥0.

Example 3. The generating function of a sequence (an)n≥0 satisfying that an = 0 for

every n > d is the polynomial
∑d

n=0 anx
n.

Example 4. It follows from (0.2) that (1 − x)−1 is the generating function of the
constant sequence all whose terms equal 1.

Example 5. For each m ∈ N, we have seen in Example 2 that the generating function
of the sequence

((
m+n−1
m−1

))
n≥0

is (1− x)−m.

We can actually use generating functions to find explicit formulas for linear recur-
rence relations. The following example illustrates how to do this.
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Example 6. Consider the sequence (an)n≥0 recurrently defined as follows: a0 = 2 and
an+1 = 5an for every n ∈ N0. Let us find a closed formula for an. Let F (x) =

∑∞
n=0 anx

n

be the generating function of the sequence (an)n≥0. Since
∑∞

n=0 an+1x
n =

∑∞
n=0 5anx

n,
we see that

∑∞
n=1 anx

n =
∑∞

n=0 an+1x
n+1 = 5x

∑∞
n=0 anx

n and, therefore,

F (x) = 2 +
∞∑
n=1

anx
n = 2 + 5x

∞∑
n=0

anx
n = 2 + 5xF (x).

Hence F (x) = 2(1− 5x)−1, and so

∞∑
n=0

anx
n = F (x) =

2

1− 5x
= 2

∞∑
n=0

(5x)n =
∞∑
n=0

2 · 5nxn,

from which we can obtain the desired explicit formula for an, namely, an = 2 · 5n for
every n ∈ N0.

Recall that the Fibonacci sequence is defined by the recurrence Fn+1 = Fn + Fn−1,
where F0 = 0 and F1 = 1. Let us conclude this lecture providing an explicit formula
for the Fibonacci numbers.

Example 7. Let F (x) be the generating function of the Fibonacci sequence. Then

F (x)− x =
∞∑
n=1

Fn+1x
n+1 = x

∞∑
n=1

Fnx
n + x2

∞∑
n=1

Fn−1x
n−1 = xF (x) + x2F (x).

Solving for F (x), we obtain that

F (x) = − x

x2 + x− 1
= −

(
A

x− α
+

B

x− β

)
,

for some A,B ∈ R, where α and β are the real roots of x2 + x − 1. From x =
A(x− β) +B(x− α), we can readily deduce that A = α

α−β
and B = β

β−α
. Thus,

F (x) =
A

α− x
+

B

β − x
=

1

α− β

(
1− x

α

)−1

+
1

β − α

(
1− x

β

)−1

=
1

α− β

∞∑
n=0

(x
α

)n

+
1

β − α

∞∑
n=0

(x
β

)n

=
∞∑
n=0

( α−n

α− β
+

β−n

β − α

)
xn.

Taking α = −1+
√
5

2
and β = −1−

√
5

2
, we obtain the following explicit formula:

Fn =
1√
5

( 2

−1 +
√
5

)n

− 1√
5

( 2

−1−
√
5

)n

=
1√
5

(1 +√
5

2

)n

− 1√
5

(1−√
5

2

)n

.
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Practice Exercises

Exercise 1. Consider the sequence (an)n≥0 satisfying that a0 = 3 and an+1 = 5an+7n

for every n ∈ N0. Find an explicit formula for an.

Exercise 2. Find a closed form for the generating function of the sequence (n2)n≥0.
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