

MIT 18.211: COMBINATORIAL ANALYSIS

FELIX GOTTI

LECTURE 15: GENERATING FUNCTIONS I: GENERALIZED BINOMIAL THEOREM AND FIBONACCI SEQUENCE

In this lectures we start our journey through the realm of generating functions. Roughly speaking, a generating function is a formal Taylor series centered at 0, that is, a formal Maclaurin series. In general, if a function $f(x)$ is smooth enough at $x = 0$, then its Maclaurin series can be written as follows:

$$(0.1) \quad \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n,$$

where $f^{(n)}(x)$ is the n -th derivative of $f(x)$. We know from Calculus that the Maclaurin series of the function $(1 - x)^{-1}$ is

$$(0.2) \quad \frac{1}{1 - x} = \sum_{n=0}^{\infty} x^n.$$

The Maclaurin series of every polynomial function is itself. In particular, the Binomial Theorem gives us an explicit formula for the Maclaurin series/polynomial of any nonnegative integer power of the binomial $1 + x$:

$$(1 + x)^m = \sum_{n=0}^m \binom{m}{n} x^n.$$

But what if we want to compute the Maclaurin series of $(1 + x)^r$ when r is not a nonnegative integer?

Generalized Binomial Theorem. The Generalized Binomial Theorem allows us to express $(1 + x)^r$ as a Maclaurin series using a natural generalization of the binomial coefficients. For any $r \in \mathbb{R}$ and $n \in \mathbb{N}_0$, we set

$$(0.3) \quad \binom{r}{n} := \frac{r(r-1)\cdots r-n+1}{n!}.$$

Observe that when $r \in \mathbb{N}_0$, we recover the standard formula for the binomial coefficients. We are now in a position to generalize the Binomial Theorem.

Theorem 1. For any $r \in \mathbb{R}$,

$$(0.4) \quad (1+x)^r = \sum_{n=0}^{\infty} \binom{r}{n} x^n.$$

Proof. Set $f(x) = (1+x)^r$. For each $n \in \mathbb{N}_0$, we see that $f^{(n)}(x) = (r)_n (1+x)^{r-n}$, and so $f^{(n)}(0)/n! = \binom{r}{n}$. Therefore the Maclaurin formula of $f(x)$ is that one in the right-hand side of (0.4). \square

As an application of Theorem 1, we can generalize (0.2).

Example 2. Let us find the Maclaurin series of $(1-x)^{-m}$ when $m \in \mathbb{N}$. First, note that for each $n \in \mathbb{N}_0$,

$$\begin{aligned} \binom{-m}{n} &= \frac{1}{n!} \prod_{i=0}^{n-1} (-m-i) = \frac{(-1)^n}{n!} m(m+1) \cdots (m+n-1) \\ &= (-1)^n \frac{(m+n-1)!}{n!(m-1)!} = (-1)^n \binom{m+n-1}{m-1}. \end{aligned}$$

Now in light of Theorem 1,

$$(1+x)^{-m} = \sum_{n=0}^{\infty} \binom{-m}{n} x^n = \sum_{n=0}^{\infty} (-1)^n \binom{m+n-1}{m-1} x^n = \sum_{n=0}^{\infty} \binom{m+n-1}{m-1} (-x)^n.$$

Evaluating the previous identity at $-x$, we obtain that

$$(1-x)^{-m} = \sum_{n=0}^{\infty} \binom{m+n-1}{m-1} x^n.$$

Generating Function of a Sequence. We can associate to any sequence $(a_n)_{n \geq 0}$ of real numbers the formal power series $\sum_{n=0}^{\infty} a_n x^n$. We call this formal power series the (*ordinary*) *generating function* of the sequence $(a_n)_{n \geq 0}$. When $\sum_{n=0}^{\infty} a_n$ converges to a function $F(x)$ in some neighborhood of 0, we also call $F(x)$ the (*ordinary*) *generating function* of $(a_n)_{n \geq 0}$.

Example 3. The generating function of a sequence $(a_n)_{n \geq 0}$ satisfying that $a_n = 0$ for every $n > d$ is the polynomial $\sum_{n=0}^d a_n x^n$.

Example 4. It follows from (0.2) that $(1-x)^{-1}$ is the generating function of the constant sequence all whose terms equal 1.

Example 5. For each $m \in \mathbb{N}$, we have seen in Example 2 that the generating function of the sequence $(\binom{m+n-1}{m-1})_{n \geq 0}$ is $(1-x)^{-m}$.

We can actually use generating functions to find explicit formulas for linear recurrence relations. The following example illustrates how to do this.

Example 6. Consider the sequence $(a_n)_{n \geq 0}$ recurrently defined as follows: $a_0 = 2$ and $a_{n+1} = 5a_n$ for every $n \in \mathbb{N}_0$. Let us find a closed formula for a_n . Let $F(x) = \sum_{n=0}^{\infty} a_n x^n$ be the generating function of the sequence $(a_n)_{n \geq 0}$. Since $\sum_{n=0}^{\infty} a_{n+1} x^n = \sum_{n=0}^{\infty} 5a_n x^n$, we see that $\sum_{n=1}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_{n+1} x^{n+1} = 5x \sum_{n=0}^{\infty} a_n x^n$ and, therefore,

$$F(x) = 2 + \sum_{n=1}^{\infty} a_n x^n = 2 + 5x \sum_{n=0}^{\infty} a_n x^n = 2 + 5xF(x).$$

Hence $F(x) = 2(1 - 5x)^{-1}$, and so

$$\sum_{n=0}^{\infty} a_n x^n = F(x) = \frac{2}{1 - 5x} = 2 \sum_{n=0}^{\infty} (5x)^n = \sum_{n=0}^{\infty} 2 \cdot 5^n x^n,$$

from which we can obtain the desired explicit formula for a_n , namely, $a_n = 2 \cdot 5^n$ for every $n \in \mathbb{N}_0$.

Recall that the Fibonacci sequence is defined by the recurrence $F_{n+1} = F_n + F_{n-1}$, where $F_0 = 0$ and $F_1 = 1$. Let us conclude this lecture providing an explicit formula for the Fibonacci numbers.

Example 7. Let $F(x)$ be the generating function of the Fibonacci sequence. Then

$$F(x) - x = \sum_{n=1}^{\infty} F_{n+1} x^{n+1} = x \sum_{n=1}^{\infty} F_n x^n + x^2 \sum_{n=1}^{\infty} F_{n-1} x^{n-1} = xF(x) + x^2 F(x).$$

Solving for $F(x)$, we obtain that

$$F(x) = -\frac{x}{x^2 + x - 1} = -\left(\frac{A}{x - \alpha} + \frac{B}{x - \beta}\right),$$

for some $A, B \in \mathbb{R}$, where α and β are the real roots of $x^2 + x - 1$. From $x = A(x - \beta) + B(x - \alpha)$, we can readily deduce that $A = \frac{\alpha}{\alpha - \beta}$ and $B = \frac{\beta}{\beta - \alpha}$. Thus,

$$\begin{aligned} F(x) &= \frac{A}{\alpha - x} + \frac{B}{\beta - x} = \frac{1}{\alpha - \beta} \left(1 - \frac{x}{\alpha}\right)^{-1} + \frac{1}{\beta - \alpha} \left(1 - \frac{x}{\beta}\right)^{-1} \\ &= \frac{1}{\alpha - \beta} \sum_{n=0}^{\infty} \left(\frac{x}{\alpha}\right)^n + \frac{1}{\beta - \alpha} \sum_{n=0}^{\infty} \left(\frac{x}{\beta}\right)^n = \sum_{n=0}^{\infty} \left(\frac{\alpha^{-n}}{\alpha - \beta} + \frac{\beta^{-n}}{\beta - \alpha}\right) x^n. \end{aligned}$$

Taking $\alpha = \frac{-1 + \sqrt{5}}{2}$ and $\beta = \frac{-1 - \sqrt{5}}{2}$, we obtain the following explicit formula:

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{2}{-1 + \sqrt{5}} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{2}{-1 - \sqrt{5}} \right)^n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n.$$

PRACTICE EXERCISES

Exercise 1. Consider the sequence $(a_n)_{n \geq 0}$ satisfying that $a_0 = 3$ and $a_{n+1} = 5a_n + 7^n$ for every $n \in \mathbb{N}_0$. Find an explicit formula for a_n .

Exercise 2. Find a closed form for the generating function of the sequence $(n^2)_{n \geq 0}$.

DEPARTMENT OF MATHEMATICS, MIT, CAMBRIDGE, MA 02139

Email address: fgotti@mit.edu